

The effects of marine renewable energy devices on the environment and ecology

Dr Philip Gillibrand

Senior Research Fellow

Environmental Research Institute, Thurso

Research at the ERI

MERIKA Marine Energy Research Innovatio

Courtesy Philippe Gleizon

Objectives

- To better understand the marine energy resource in Scotland, particularly the Pentland Firth
- To better understand the oceanographic and meteorological challenges to operation and maintenance of marine energy arrays

- Tidal resource assessment; wave climate assessment
- Modelling (including turbulence & array effects)
- Device-environment physical interaction (measurement and modelling)
- Climatology including Weather windowing (for installation & maintenance)

- Tidal resource assessment; wave climate assessment
- Modelling (including turbulence and array effects)
- Device-environment physical interaction (measurement and modelling)
- Climatology including Weather windowing (for installation and maintenance)

- Tidal resource assessment; wave climate assessment
- Modelling (including turbulence and array effects)
- Device-environment physical interaction (measurement and modelling)
- Climatology including Weather windowing (for installation and maintenance)

Objectives

- To better understand the environment in which marine energy arrays are planned
- To better understand the potential interactions of marine energy extraction with that environment.
- To enable sustainable development of the marine energy industry.

- Fish habitat use and migrations (particularly salmonids)
- Seabird ecology
- Benthic interactions
- Bio-fouling and non-native species

Important migratory route for Atlantic salmon around Europe

- Fish habitat use and migrations (particularly salmonids)
- Seabird ecology
- Benthic interactions
- Bio-fouling and non-native species

Diving behaviour of black guillemots

GPS tracks of great skuas

- Fish habitat use and migrations (particularly salmonids)
- Seabird ecology
- Benthic interactions
- Bio-fouling and non-native species

- Fish habitat use and migrations (particularly salmonids)
- Seabird ecology
- Benthic interactions
- Bio-fouling and non-native species

Outcomes

- Contributions to scientific literature
- Improved tools and methods for resource assessment
- Improved understanding of some key aspects of marine energy interactions with the environment
- Engagement and knowledge exchange with policymakers and developers

Contribution to the marine energy sector

- Developing tools and methods to improve resource estimation
- Developing tools and methods to predict the operating environment
- Providing information and data pertinent to Environmental Impact Assessments and sustainable development of industry
- Gathering information for the type, siting and scale of future development

